

Business Club

Deep Learning

Business Club Analytics Team

Introduction

1. Motivation
2. Neural Network Basics
3. Logistic Regression as NN - single layer

a. Framework
b. Activation Functions
c. Gradient Descent

4. Deep Learning Structure
a. Forward Propagation
b. Backward Propagation

5. Regularization of Neural Networks
a. L2 Regularization
b. Dropout Regularization
c. Data augmentation

6. Optimization of Neural Networks
a. Mini-batch Gradient Descent
b. Momentum Gradient Descent
c. Adagrad
d. Adam Algorithm

7. Convolutional Neural Networks
8. Recurrent Neural Networks

Motivation

For decades machine learning technology powered many aspects of
modern society: from content filtering on social networks to
recommendations on e-commerce websites to web searches, and it is
increasingly present in consumer products such as cameras and
smart-phones. The performance of these algorithms depends profoundly
on the representation of the data given to them. Constructing a
machine-learning system requires careful engineering of the model and a
feature extractor that transforms the raw data into a suitable internal
representation from which the learning subsystem could detect patterns
in the input.

For example, when a logistic regression model is used to classify breast
cancer, the system does not examine the patient directly but the doctor
tells the system several pieces of relevant information also called
features. But what if the features are changed or an image is given as
input data, the model will simply fail to provide a useful prediction.

The above stated problem proposed the need for a more advanced
machine learning technique that allows a machine to be fed with raw
(unstructured) data and to automatically discover the representations
needed for classification or detection.

This led to the development of Deep Learning. Deep-learning models
have multiple levels of representation, obtained by composing simple but
non-linear modules each of which transform the representation at one
level into a representation at a higher, slightly more abstract level. With
the composition of sufficient such transformations, very complex
functions can be learned. Nowadays Deep Learning is used in
autonomous driving, transcription of speech into text, face detection,
photo tagging, machine translation and many other cool applications.

Neural Networks

In the past 10 years, the best-performing artificial-intelligence systems —
such as the speech recognizers on smartphones or Google’s latest
automatic translator — have resulted from a technique called “deep
learning.”

Deep learning is in fact a new name for an approach to artificial
intelligence called neural networks, which have been going in and out of
fashion for more than 70 years. Neural networks were first proposed in
1944 by Warren McCullough and Walter Pitts, two researchers at
University of Chicago.

Deep Learning is the answer to the problem posed in the previous
section. Deep Learning is achieved by using neural networks. Neural
Networks are powerful because of their excellent performance with
unstructured data viz. audio, image, text.

Every learning-based problem can be boiled down to a mapping
problem. Deep learning maps inputs to outputs. It finds correlations. It is
known as a “universal approximator”, because it can learn to
approximate an unknown function f(x) = y between any input x and any
output y, assuming they are somehow related (by correlation or
causation, for example). In the process of learning, a neural network
finds the right f, or the correct manner of transforming x into y, whether
that be f(x) = 3x + 12 or f(x) = e^x or a complex function beyond our
imagination.

The definition of a neural network, more properly referred to as an
'artificial' neural network (ANN), is provided by the inventor of one of the
first neurocomputers, Dr. Robert Hecht-Nielsen. He defines a neural
network as:
" A computing system made up of a number of simple, highly
interconnected processing elements, which process information by
their dynamic state response to external inputs."

It might be difficult to understand the above formal definition of Neural
Networks, so let us try to look at artificial neural networks from a different
perspective to have an intuitive understanding of the concept. Let us
think of ANN as a computational model that is inspired by the way
biological neural networks in the human brain process information.

Artificial neural networks (ANN) are computing systems vaguely inspired
by the biological neural networks that constitute animal brains. The
neural network itself is not an algorithm, but rather a framework for
many different machine learning algorithms to work together and
process complex data inputs. Such systems "learn" to perform tasks
by considering examples, generally without being programmed with any
task-specific rules.

Biological motivation and connections

The basic computational unit of the brain is a neuron. Approximately 86
billion neurons can be found in the human nervous system and they are
connected with approximately 10¹⁴ — 10¹⁵ synapses. The diagram below
shows an animated drawing of a biological neuron.

The basic unit of computation in a neural network is the neuron, often
called a node or unit. It receives input from some other nodes, or from an

external source and computes an output. Each input has an associated
weight (w), which is assigned on the basis of its relative importance to
other inputs. The node applies a function to the weighted sum of its
inputs.

The idea is that the synaptic strengths (the weights w) are learnable and
control the strength of influence and its direction: excitatory (positive
weight) or inhibitory (negative weight) of one neuron on another. In the
biological model, the dendrites carry the signal to the cell body where
they all get summed. If the final sum is above a certain threshold, the
neuron can fire, sending a spike along its axon. In the computational
model, we assume that the precise timings of the spikes do not matter,
and that only the frequency of the firing communicates information. We
model the firing rate of the neuron with an activation function which
represents the frequency of the spikes along the axon.

Neural Network Architecture

From the above explanation we can conclude that a neural network is
made of neurons, biologically the neurons are connected through
synapses through which information flows (weights for our computational
model). When we train a neural network we want the neurons to fire
whenever they learn specific patterns from the data, and we model the
firing rate using an activation function.

But that’s not everything…
Before building our first neural network, it is imperative to understand
some basic notations and terminologies involved in describing
architecture of a neural network.

Input Nodes (input layer): No computation is done within this layer;
they just pass the information to the next layer (hidden layer most of the
time).
A block of nodes is also called a layer.

Hidden nodes (hidden layer): It is in Hidden layers where intermediate
processing or computation is done. They perform computations and
then transfer the weights (signals or information) from the input layer to
the following layer (another hidden layer or to the output layer).
It is also possible to have a neural network without a hidden layer and
we will come to this in the next section.

Output Nodes (output layer): Here we finally use an activation
function that maps to the desired output format (e.g. SoftMax for
classification problem).

Connections and weights: The network consists of connections, each
connection transferring the output of a neuron i to the input of a neuron j.
In this sense i is the predecessor of j. Each connection is assigned a
weight Wij.

Activation function: The activation function of a node defines the
output of that node given an input or set of inputs. A standard computer
chip circuit can be seen as a digital network of activation functions that
can be “ON '' (1) or “OFF” (0), depending on input. This is similar to the
behaviour of the linear perceptron in neural networks. However, it is the
nonlinear activation function that allows such networks to compute non
trivial problems using only a small number of nodes. In artificial neural
networks this function is also called the transfer function.

Learning rule: The learning rule is a rule or an algorithm which modifies
the parameters of the neural network, in order for a given input to the
network to produce a favoured output. This learning process typically
amounts to modifying the weights and thresholds.

The above figure shows the computations involved in a single neuron

Logistic Regression as Neural Network –

single layer

Single Layer Perceptron Neural Network

A single layer perceptron is the simplest Neural Network with only one
neuron, also called the McCullock-Pitts (MP) neuron, which transforms
the weighted sum of its inputs that trigger the activation function to
generate a single output. Below is a sample diagram of such a neural
network with X as the inputs, Θi as the weights, z as the weighted input
and g as the output. Note that there are no hidden layers. A single input
and a single output layer are present.

To understand how a neural network works as a logistic regression
classifier, let us consider a binary classification problem. For the
purposes of explanation, we will use this single neuron NN to predict the
target variable, using Logistic Regression.

We’re using a classification algorithm to predict a binary output with
values being 0 or 1. The function to represent our hypothesis is the
Sigmoid function, which is also called the logistic function.

Basic Framework of Algorithm

1. Define Model Structure (input/output dimensions and number of hidden

layers and no. neurons in each layer)

2. Initialize model parameters (weights and biases)

3. loop {

a. Calculate current Loss (Forward Propagation)

b. Calculate current gradient (Backward Propagation)

c. Update parameters (Gradient Descent) }

Neural Network Input

From the previous figure we can observe that there are ‘n’ neurons in the
input layer. The input to the output layer (a single neuron) is the
weighted sum of the inputs Xi:

Activation function

The input (z) is transformed using the activation function which
generates values as probabilities from 0 to 1:

Here we will use sigmoid activation function

The mathematical equation that describes it is:

Neural network activation functions are a crucial component of deep
learning. Activation functions determine the output of a deep learning
model, its accuracy, and also the computational efficiency of training a
model—which can make or break a large-scale neural network.
Activation functions also have a major effect on the neural network’s
ability to converge and the convergence speed, or in some cases,
activation functions might prevent neural networks from converging in
the first place.

Some other non-linear activation functions are TanH (Hyperbolic
Tangent), ReLU (Rectified Linear Unit), Leaky ReLU, Parametric ReLu,
Softmax, Swish.

Hypothesis

If we combine all the above, we can formulate the hypothesis function for
our classification problem:

Cost Function

Selecting the correct Cost function is paramount and a deeper
understanding of the optimisation problem being solved is required.

Initially it may seem that one of the most common optimisation functions,
Least Squares, would be sufficient for our problem

Unfortunately, this won’t work. This is because we used a nonlinear
function for the hypothesis - the sigmoid function. For optimisation
purposes, the sigmoid is considered a non-convex function having
multiple of local minima which would mean that it would not always
converge.

The answer to this is using a convex logistic regression cost function, the
Cross-Entropy Loss, which might look long and scary but gives a very
neat formula for the Gradient as we’ll see later:

Deep Learning Structure

Forward Propagation

The process of taking input, applying weights and activation function is
repeated across layers till we reach the output layer. At the end of a
forward pass, we calculate the current loss as discussed in the previous
section. This forward pass from input layer (left end) to output layer (right
end) is called Forward Propagation.

Intuitively, our next task is to minimize the loss function. That is, we need
to find a combination of parameters that give us the minimum loss.

Using analytical methods, the next step here would be to calculate the
Gradient, which is the step at each iteration, by which the algorithm
converges towards the global minimum and, hence the name Gradient
Descent.

In mathematical terms this is just the partial derivative of the cost
function with respect to the weights. i.e. in every iteration you calculate
the adjustment (or delta) for the weights:

and repeat for each iteration

Backward Propagation

Here we will use the backpropagation chain rule to arrive at the same
formula for the gradient descent.

Gradient Descent using Backpropagation Chain Rule

As per the diagram above, the calculation of the partial derivative of the
Cost function with respect to the weights, using the chain rule, can be
broken down to 3 partial derivative terms:

Term (1)
If we differentiate J(θ) with respect to h, we practically take the
derivatives of log(h) and log(1-h) as the two main parts of J(Θ). With a
little tidying up the maths, we end up with the following term:

Term (2)
The 2nd term is the derivative of the sigmoid function:

Term (3)
The 3rd term is just the input vector X:

If we substitute the 3 terms in the calculation for J’, we end up with the
swift equation we saw above for the gradient using analytical methods:

Summary — Equations

Prediction & Classification
After finding the right combination of parameters we can predict output
class (0 or 1) with given input. The result is the predicted probability that
the output is 1. To turn this into a classification we only need to set a
threshold (for example 0.5) and round the results up or down, whichever
is the closest.

Regularization of Neural Networks

While training a neural network, one general problem we come across is
the problem of overfitting or high variance. Overfitting occurs when the
model learns the features and noise in the training data to such an extent
that it affects the performance of the model on test data.

Regularization is the technique to reduce variance in the model. Getting
more training data is one of the easiest methods of solving the overfitting
problem, penalizing cost function and changing NN architecture at random
are a few others.

Types of Regularization:

1. L1 and L2 regularization
2. Dropout regularization
3. Data Augmentation

1.) L1 and L2 regularization:

This regularization technique tends to decrease the value of the weight’s
matrix. In L1 and L2 regularization we add a regularization term to the cost
function.

L1 regularization:

 L2 regularization:

where,

 ƛ is the regularization parameter.

 L is the cost function

By adding the weight matrix or the squared norm of the weight matrix
and multiplying it by the regularization parameter in order to minimize the
cost function, larger weights will be driven down. Reducing the weights
will decrease the output value from activation function, thus decreasing
the complexity of the model and decreasing the overfitting.

2.) Dropout:

In dropout regularization, few of the hidden layers’ nodes are randomly
dropped with a fixed probability, for example if the probability threshold is
set to 0.8, 20% of the units will be dropped.

With and without dropout (one iteration)

In each iteration, dropout will randomly eliminate a few of the
nodes, thus giving a new architecture for every iteration, this means

that the neural network cannot rely on any input node, or will be
reluctant to assign high weights to certain features since each has a
random probability of being removed.

3.) Data Augmentation:
Increasing the size of training data is efficient in decreasing the high
variance problem, but getting more input data can be costly and not
always possible. So, in order to get more data, one of the possible
solutions is to make minor modifications in existing dataset. This
technique can be useful in training CNNs.

Augmentations Technique: -

1. Rotation- Horizontal and vertical flip without changing the
dimension of the image will produce multiple similar images.

2. Crop and Scale- Scaling or randomly selecting random
sections from an image will produce arbitrarily many images.
The effect of these images on the model will be less but will
prevent the model to overfit from a particular orientation or
section.

3. Gaussian Noise- Learning high frequency features that are not
useful may lead to overfitting. Introducing gaussian error will
effectively distort the high frequency features. Adjusting the
right amount of noise can enhance the learning capability.

Optimization of Neural Networks

In a deep neural network, there are thousands to millions of parameters
to train. Being an iterative process, it is necessary to complete an
iteration quickly to train the model effectively. Hence there is a need to
optimize the gradient descent algorithm for an efficient model.

Types of Optimizers:

1.) Mini-batch gradient descent:
In traditional gradient descent algorithms, all the training data is used,
which slows down the algorithm and with new datasets with millions of
data points, it will take an extremely long time to train a complete dataset
in an iteration.

Solution to this is to break up the data into a set of smaller datasets,
each set is called a mini-batch. In each iteration we train the algorithm
on a batch and proceed once training is done for each mini-batch. Thus
the time taken for each iteration will decrease and the model will be
trained much faster. The oscillations in the mini-batch gradient descent
will be greater as only a portion of the dataset is taken and, in a few
cases, may not lead to convergence.

The batch size is generally taken in powers of 2(64, 128, 512). When the
batch size is taken to be 1, i.e. training on a single data set in one
iteration, then it is called Stochastic Gradient Descent.

2.) Momentum:
Momentum accelerates SGD by navigating it along the relevant direction
and softens the oscillations in irrelevant directions, thus decreasing the
high variance oscillation in SGD which had made it difficult to converge.
Mathematically it adds a fraction ‘γ’ of the update vector of the past step
to the current update vector.

Equation of momentum is:
V(t)=γV(t−1)+η∇J(θ)

and update the parameter as
θ=θ−V(t).

3.) Adagrad:
Adagrad allows the Learning Rate -η to adapt according to the
parameters. So it makes big updates for infrequent parameters and
small updates for frequent parameters. Adagrad modifies the general
learning rate η at each time step t for every parameter θ(i) based on the
past gradients that have been computed for θ(i).

Equation for learning rate update is

Adagrad works really well for sparse datasets where a lot of input
examples are missing.

Adagrad has a major issue in that the adaptive learning rate tends to get
really small over time. Some other optimizers below seek to eliminate
this problem.

4.) Adam:
Adaptive Moment Estimation (Adam) computes adaptive learning rates
for each parameter. In addition to storing an exponentially decaying
average of past squared gradients, Adam also keeps an exponentially
decaying average of past gradients , similar to momentum

vt and st are values of the first moment (Mean) and the second
moment (uncentered Variance) of the gradients respectively

gt is the gradient.

Adam eliminates most of the problems faced during optimization
such as vanishing learning rate, slow convergence or high variance
in the parameter updates, and thus works well in practice and is the
most widely used optimizer.

Adam is more computationally expensive than all the other methods
explained above.

Convolutional Neural Networks

Convolution Neural Networks use a special architecture which is
particularly well-adapted to classify images. Using this architecture
makes convolutional networks fast to train. This, in turn, helps us train
deep, multi-layer networks which are very good at classifying images.
Today, deep convolutional networks or some close variants are used in
most neural networks for image recognition.

Convolutional neural networks use three basic ideas: local receptive
fields, shared weights, and pooling

Local receptive fields
Consider a 28×28-pixel image. Each pixel intensity is an input neuron.

In a conventional neural network, each input neuron was connected to
each neuron in the first hidden layer. But it isn’t really necessary to use
networks with fully-connected layers to classify images because we can
take advantage of the spatial structure, i.e. the relative position of each
input neuron. So we won't connect every input pixel to every hidden
neuron. Instead, each neuron in the first hidden layer will be connected
to a 5×5 region called the local receptive field, corresponding to 25
input pixels.

So, for a particular hidden neuron, the connections will look like this:

Each connection to the hidden neuron learns a weight and an overall
bias. Hence each hidden neuron sort of learns to analyse its particular
local receptive field. We then slide the local receptive field across the
entire input image. For each local receptive field, there is a different
hidden neuron in the first hidden layer.

Then we slide the local receptive field over by one pixel to the right (i.e.,
by one neuron), to connect to a second hidden neuron:

And so on, building up the first hidden layer. Note that if we have a
28×28 input image, and 5×5 local receptive fields, then there will be
24×24 neurons in the hidden layer. This is because we can only move

the local receptive field 23 neurons across (or 23 neurons down), before
colliding with the right-hand side (or bottom) of the input image. The
stride length need not necessarily be 1. We choose the optimal stride
length using validation data to pick out the stride length which gives the
best performance (ease of training without significant compromise in
accuracy of classification). A similar approach is used to choose the
size of the local receptive field.

Shared weights and biases

Each hidden neuron has a bias and a 5×5 weight matrix (one weight for
each input in the local receptive field). This set of weights and biases is
used to search for a particular feature in that region. Now because it
may be useful to apply the same feature detector at other points in the
image, we use the same weights and biases for each of the 24×24
hidden neurons. This means that all the neurons in the first hidden layer
search for exactly the same feature, just at different locations within the
image. We can do this because of the translation invariance of images;
move a picture of a cat a little way, and it's still an image of a cat.
Hence, the map from the input layer to the first hidden layer is called a
feature map. Each feature map is associated with a feature that it
searches for in the image, using a single shared weight matrix and a
single bias. The first hidden layer consists of multiple feature maps and
is called a convolutional layer.

A big advantage of sharing weights and biases is that it greatly reduces
the number of parameters involved in a convolutional network. For each
feature map we need 5×5 shared weights, plus a single shared bias. So
each feature map requires 26 parameters. If we have 20 feature maps
that's a total of 20×26=520 parameters defining the convolutional layer.
By comparison, suppose we had a fully connected first layer, with

28×28 input neurons, and a relatively modest 30 hidden neurons, as we
used in many of the examples earlier in the book. That's a total of
784×30 weights, plus an extra 30 biases, for a total of 23,550
parameters. In other words, the fully-connected layer would have more
than 40 times as many parameters as the convolutional layer. Reducing
the number of parameters will result in faster training for the
convolutional model, and will help us build deeper networks using
convolutional layers.

Pooling Layers

In addition to the convolutional layers just described, convolutional neural
networks also contain pooling layers. Pooling layers are usually used
immediately after convolutional layers. What the pooling layers do is
simplify the information in the output from the convolutional layer. A
pooling layer takes the output from each feature map (i.e. a particular
layer in the convolutional layer) and prepares a more condensed feature
map by summarizing a region of 2×2 neurons.

One common procedure for pooling is known as max-pooling. In
max-pooling, a pooling unit simply outputs the maximum activation in the
2×2 input region, as illustrated in the following diagram:

Note that since we have 24×24 neurons output from each feature map in
the convolutional layer, after pooling we have 12×12 neurons for each
map.

We can think of max-pooling as a way for the network to ask whether a
given feature is found anywhere in a region of the image, then throw
away the exact positional information. The idea is that once a feature has
been found, its exact location isn't as important as its rough location
relative to other features. This helps reduce the number of parameters
needed in later layers.

Recurrent Neural Networks

One of the problems with the convolutional and artificial neural network is
that the input and output size is predefined. For tasks like Speech
Recognition, handling text and music composition, the input and output
size are variable, thus proposing the need for a new neural network
architecture which can process sequences.

Recurrent neural networks help us to process variable length sequences
as input and produce a suitable output. It is often used in the task of
Natural Language Processing.

Architecture:

The architecture of RNN forms a directed graph along a sequence. It
permits the dynamic temporal behaviour for time and text sequence.
Let's take the example of the prediction of the next word in a sequence.
For this, we need to learn the relation between the words prior to it and
an internal state (memory) to process the sequence.

To achieve it, a loop is created between the networks which allow the
information to persist.

The unrolled version of this architecture is

where xi is the input and yi is the output.

RNN uses three types of weights:

● W , used for ht-1 → ht
● Why, used for ht → yt
● Wxx, used for xt → ht

There can be many variations possible for the structure of RNN:

● One-to-One: This architecture has fixed input and fixed output
size; we don’t need an RNN for this.

● One-to-Many: Input size is fixed but variable output size. Used for
image captioning, where image is the single input and a caption
string is the output. Music generation is also one of the
applications.

● Many-to-one: This kind of network is used for sentiment analysis,
for example, if we have to give the probability of a comment being
positive or negative.

● Many-to-Many: Size of both input and output is variable. This
architecture is used for translation as the output depends on the
previous input and the size of the output is variable.

