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Motivation 
 

For decades machine learning technology powered many aspects of         
modern society: from content filtering on social networks to         
recommendations on e-commerce websites to web searches, and it is          
increasingly present in consumer products such as cameras and         
smart-phones. The performance of these algorithms depends profoundly        
on the representation of the data given to them. Constructing a           
machine-learning system requires careful engineering of the model and a          
feature extractor that transforms the raw data into a suitable internal           
representation from which the learning subsystem could detect patterns         
in the input. 

 

For example, when a logistic regression model is used to classify breast            
cancer, the system does not examine the patient directly but the doctor            
tells the system several pieces of relevant information also called          
features. But what if the features are changed or an image is given as              
input data, the model will simply fail to provide a useful prediction. 

The above stated problem proposed the need for a more advanced           
machine learning technique that allows a machine to be fed with raw            
(unstructured) data and to automatically discover the representations        
needed for classification or detection.  

 

This led to the development of Deep Learning. Deep-learning models          
have multiple levels of representation, obtained by composing simple but          
non-linear modules each of which transform the representation at one          
level into a representation at a higher, slightly more abstract level. With            
the composition of sufficient such transformations, very complex        
functions can be learned. Nowadays Deep Learning is used in          
autonomous driving, transcription of speech into text, face detection,         
photo tagging, machine translation and many other cool applications. 

 
 

 



 

 

Neural Networks 

In the past 10 years, the best-performing artificial-intelligence systems —          
such as the speech recognizers on smartphones or Google’s latest          
automatic translator — have resulted from a technique called “deep          
learning.” 

Deep learning is in fact a new name for an approach to artificial             
intelligence called neural networks, which have been going in and out of            
fashion for more than 70 years. Neural networks were first proposed in            
1944 by Warren McCullough and Walter Pitts, two researchers at          
University of Chicago. 

Deep Learning is the answer to the problem posed in the previous            
section. Deep Learning is achieved by using neural networks. Neural          
Networks are powerful because of their excellent performance with         
unstructured data viz. audio, image, text. 
 
Every learning-based problem can be boiled down to a mapping          
problem. Deep learning maps inputs to outputs. It finds correlations. It is            
known as a “universal approximator”, because it can learn to          
approximate an unknown function f(x) = y between any input x and any             
output y, assuming they are somehow related (by correlation or          
causation, for example). In the process of learning, a neural network           
finds the right f, or the correct manner of transforming x into y, whether              
that be f(x) = 3x + 12 or f(x) = e^x or a complex function beyond our                 
imagination. 
 
The definition of a neural network, more properly referred to as an            
'artificial' neural network (ANN), is provided by the inventor of one of the             
first neurocomputers, Dr. Robert Hecht-Nielsen. He defines a neural         
network as: 
" A computing system made up of a number of simple, highly            
interconnected processing elements, which process information by       
their dynamic state response to external inputs." 
 

 



 

 

 
It might be difficult to understand the above formal definition of Neural            
Networks, so let us try to look at artificial neural networks from a different              
perspective to have an intuitive understanding of the concept. Let us           
think of ANN as a computational model that is inspired by the way             
biological neural networks in the human brain process information. 
 
Artificial neural networks (ANN) are computing systems vaguely inspired         
by the biological neural networks that constitute animal brains. The          
neural network itself is not an algorithm, but rather a framework for            
many different machine learning algorithms to work together and         
process complex data inputs. Such systems "learn" to perform tasks          
by considering examples, generally without being programmed with any         
task-specific rules. 

Biological motivation and connections 

 

The basic computational unit of the brain is a neuron. Approximately 86            
billion neurons can be found in the human nervous system and they are             
connected with approximately 10¹⁴ — 10¹⁵ synapses. The diagram below          
shows an animated drawing of a biological neuron. 

 
 
 
The basic unit of computation in a neural network is the neuron, often             
called a node or unit. It receives input from some other nodes, or from an               

 



 

 

external source and computes an output. Each input has an associated           
weight (w), which is assigned on the basis of its relative importance to             
other inputs. The node applies a function to the weighted sum of its             
inputs. 
 
The idea is that the synaptic strengths (the weights w) are learnable and             
control the strength of influence and its direction: excitatory (positive          
weight) or inhibitory (negative weight) of one neuron on another. In the            
biological model, the dendrites carry the signal to the cell body where            
they all get summed. If the final sum is above a certain threshold, the              
neuron can fire, sending a spike along its axon. In the computational            
model, we assume that the precise timings of the spikes do not matter,             
and that only the frequency of the firing communicates information. We           
model the firing rate of the neuron with an activation function which            
represents the frequency of the spikes along the axon. 
  

 



 

 

Neural Network Architecture 

 

From the above explanation we can conclude that a neural network is            
made of neurons, biologically the neurons are connected through         
synapses through which information flows (weights for our computational         
model). When we train a neural network we want the neurons to fire             
whenever they learn specific patterns from the data, and we model the            
firing rate using an activation function. 
 
But that’s not everything… 
Before building our first neural network, it is imperative to understand           
some basic notations and terminologies involved in describing        
architecture of a neural network. 

 

 



 

 

Input Nodes (input layer): No computation is done within this layer;           
they just pass the information to the next layer (hidden layer most of the              
time).  
A block of nodes is also called a layer. 
 
Hidden nodes (hidden layer): It is in Hidden layers where intermediate           
processing or computation is done. They perform computations and         
then transfer the weights (signals or information) from the input layer to            
the following layer (another hidden layer or to the output layer).  
It is also possible to have a neural network without a hidden layer and              
we will come to this in the next section. 
 
Output Nodes (output layer): Here we finally use an activation          
function that maps to the desired output format (e.g. SoftMax for           
classification problem). 
 
Connections and weights: The network consists of connections, each         
connection transferring the output of a neuron i to the input of a neuron j.               
In this sense i is the predecessor of j. Each connection is assigned a              
weight Wij. 
 
Activation function: The activation function of a node defines the          
output of that node given an input or set of inputs. A standard computer              
chip circuit can be seen as a digital network of activation functions that             
can be “ON '' (1) or “OFF” (0), depending on input. This is similar to the                
behaviour of the linear perceptron in neural networks. However, it is the            
nonlinear activation function that allows such networks to compute non          
trivial problems using only a small number of nodes. In artificial neural            
networks this function is also called the transfer function. 
 
 
 
 

 



 

 

Learning rule: The learning rule is a rule or an algorithm which modifies             
the parameters of the neural network, in order for a given input to the              
network to produce a favoured output. This learning process typically          
amounts to modifying the weights and thresholds. 

 
 

 
The above figure shows the computations involved in a single neuron 

 
  

 



 

 

Logistic Regression as Neural Network – 

single layer 

Single Layer Perceptron Neural Network 

A single layer perceptron is the simplest Neural Network with only one            
neuron, also called the McCullock-Pitts (MP) neuron, which transforms         
the weighted sum of its inputs that trigger the activation function to            
generate a single output. Below is a sample diagram of such a neural             
network with X as the inputs, Θi as the weights, z as the weighted input               
and g as the output. Note that there are no hidden layers. A single input               
and a single output layer are present. 

 

 

 



 

 

To understand how a neural network works as a logistic regression           
classifier, let us consider a binary classification problem. For the          
purposes of explanation, we will use this single neuron NN to predict the             
target variable, using Logistic Regression.  

We’re using a classification algorithm to predict a binary output with           
values being 0 or 1. The function to represent our hypothesis is the             
Sigmoid function, which is also called the logistic function. 

 

Basic Framework of Algorithm 

1. Define Model Structure (input/output dimensions and number of hidden         

layers and no. neurons in each layer) 

2. Initialize model parameters (weights and biases) 

3. loop { 

a. Calculate current Loss (Forward Propagation) 

b. Calculate current gradient (Backward Propagation) 

c. Update parameters (Gradient Descent) } 

 
 

 

Neural Network Input 

From the previous figure we can observe that there are ‘n’ neurons in the 
input layer. The input to the output layer (a single neuron) is the 
weighted sum of the inputs Xi: 
 

 

 
 

 

 



 

 

Activation function 

The input (z) is transformed using the activation function which          
generates values as probabilities from 0 to 1:  

Here we will use sigmoid activation function 

 

The mathematical equation that describes it is: 

  

Neural network activation functions are a crucial component of deep          
learning. Activation functions determine the output of a deep learning          
model, its accuracy, and also the computational efficiency of training a           
model—which can make or break a large-scale neural network.         
Activation functions also have a major effect on the neural network’s           
ability to converge and the convergence speed, or in some cases,           
activation functions might prevent neural networks from converging in         
the first place. 

 
Some other non-linear activation functions are TanH (Hyperbolic        
Tangent), ReLU (Rectified Linear Unit), Leaky ReLU, Parametric ReLu,         
Softmax, Swish. 

  

 



 

 

Hypothesis 

If we combine all the above, we can formulate the hypothesis function for 
our classification problem: 

 

 
 
 

Cost Function 

Selecting the correct Cost function is paramount and a deeper          
understanding of the optimisation problem being solved is required. 

Initially it may seem that one of the most common optimisation functions,            
Least Squares, would be sufficient for our problem  

 

Unfortunately, this won’t work. This is because we used a nonlinear           
function for the hypothesis - the sigmoid function. For optimisation          
purposes, the sigmoid is considered a non-convex function having         
multiple of local minima which would mean that it would not always            
converge. 

The answer to this is using a convex logistic regression cost function, the             
Cross-Entropy Loss, which might look long and scary but gives a very            
neat formula for the Gradient as we’ll see later: 

 

 

 
  

 



 

 

Deep Learning Structure 

Forward Propagation 

The process of taking input, applying weights and activation function is           
repeated across layers till we reach the output layer. At the end of a              
forward pass, we calculate the current loss as discussed in the previous            
section. This forward pass from input layer (left end) to output layer (right             
end) is called Forward Propagation.  

Intuitively, our next task is to minimize the loss function. That is, we need              
to find a combination of parameters that give us the minimum loss.  

Using analytical methods, the next step here would be to calculate the            
Gradient, which is the step at each iteration, by which the algorithm            
converges towards the global minimum and, hence the name Gradient          
Descent. 

In mathematical terms this is just the partial derivative of the cost            
function with respect to the weights. i.e. in every iteration you calculate            
the adjustment (or delta) for the weights: 

 

 

and repeat for each iteration 

 

 

 

 



 

 

Backward Propagation 

 
Here we will use the backpropagation chain rule to arrive at the same 
formula for the gradient descent. 

 
Gradient Descent using Backpropagation Chain Rule 

 

 

As per the diagram above, the calculation of the partial derivative of the 
Cost function with respect to the weights, using the chain rule, can be 
broken down to 3 partial derivative terms: 

 



 

 

 

Term (1) 
If we differentiate J(θ) with respect to h, we practically take the 
derivatives of log(h) and log(1-h) as the two main parts of J(Θ). With a 
little tidying up the maths, we end up with the following term: 

 

 

Term (2) 
The 2nd term is the derivative of the sigmoid function: 

 

 

Term (3) 
The 3rd term is just the input vector X: 

 

 

 

 

 



 

 

If we substitute the 3 terms in the calculation for J’, we end up with the 
swift equation we saw above for the gradient using analytical methods: 

 

 
 
Summary — Equations 
 

 

 

 
 
Prediction & Classification 
After finding the right combination of parameters we can predict output           
class (0 or 1) with given input. The result is the predicted probability that              
the output is 1. To turn this into a classification we only need to set a                
threshold (for example 0.5) and round the results up or down, whichever            
is the closest. 

  

 



 

 

Regularization of Neural Networks 

 
While training a neural network, one general problem we come across is            
the problem of overfitting or high variance. Overfitting occurs when the           
model learns the features and noise in the training data to such an extent              
that it affects the performance of the model on test data. 
 

Regularization is the technique to reduce variance in the model. Getting           
more training data is one of the easiest methods of solving the overfitting             
problem, penalizing cost function and changing NN architecture at random          
are a few others. 

 

Types of Regularization: 

1. L1 and L2 regularization  
2. Dropout regularization 
3. Data Augmentation 

 

 

1.) L1 and L2 regularization:  

This regularization technique tends to decrease the value of the weight’s           
matrix. In L1 and L2 regularization we add a regularization term to the cost              
function. 

 

L1 regularization: 

          

 

 

 



 

 

 L2 regularization:  

           
 

where, 

 ƛ is the regularization parameter.  

 L is the cost function 

 

By adding the weight matrix or the squared norm of the weight matrix             
and multiplying it by the regularization parameter in order to minimize the            
cost function, larger weights will be driven down. Reducing the weights           
will decrease the output value from activation function, thus decreasing          
the complexity of the model and decreasing the overfitting. 

 

2.) Dropout: 

In dropout regularization, few of the hidden layers’ nodes are randomly           
dropped with a fixed probability, for example if the probability threshold is            
set to 0.8, 20% of the units will be dropped. 

 
With and without dropout (one iteration) 

 
 

In each iteration, dropout will randomly eliminate a few of the           
nodes, thus giving a new architecture for every iteration, this means           

 



 

 

that the neural network cannot rely on any input node, or will be             
reluctant to assign high weights to certain features since each has a            
random probability of being removed. 

 

3.) Data Augmentation: 
Increasing the size of training data is efficient in decreasing the high            
variance problem, but getting more input data can be costly and not            
always possible. So, in order to get more data, one of the possible             
solutions is to make minor modifications in existing dataset. This          
technique can be useful in training CNNs. 

 

Augmentations Technique: - 

1. Rotation- Horizontal and vertical flip without changing the        
dimension of the image will produce multiple similar images. 

2. Crop and Scale- Scaling or randomly selecting random        
sections from an image will produce arbitrarily many images.         
The effect of these images on the model will be less but will             
prevent the model to overfit from a particular orientation or          
section. 

3. Gaussian Noise- Learning high frequency features that are not         
useful may lead to overfitting. Introducing gaussian error will         
effectively distort the high frequency features. Adjusting the        
right amount of noise can enhance the learning capability. 

 

 

  

 



 

 

Optimization of Neural Networks 
 

In a deep neural network, there are thousands to millions of parameters            
to train. Being an iterative process, it is necessary to complete an            
iteration quickly to train the model effectively. Hence there is a need to             
optimize the gradient descent algorithm for an efficient model. 

 

Types of Optimizers: 

1.) Mini-batch gradient descent: 
In traditional gradient descent algorithms, all the training data is used,           
which slows down the algorithm and with new datasets with millions of            
data points, it will take an extremely long time to train a complete dataset              
in an iteration. 
 
Solution to this is to break up the data into a set of smaller datasets,               
each set is called a mini-batch. In each iteration we train the algorithm             
on a batch and proceed once training is done for each mini-batch. Thus             
the time taken for each iteration will decrease and the model will be             
trained much faster. The oscillations in the mini-batch gradient descent          
will be greater as only a portion of the dataset is taken and, in a few                
cases, may not lead to convergence. 
 
The batch size is generally taken in powers of 2(64, 128, 512). When the              
batch size is taken to be 1, i.e. training on a single data set in one                
iteration, then it is called Stochastic Gradient Descent.  
 

2.) Momentum: 
Momentum accelerates SGD by navigating it along the relevant direction          
and softens the oscillations in irrelevant directions, thus decreasing the          
high variance oscillation in SGD which had made it difficult to converge.  
Mathematically it adds a fraction ‘γ’ of the update vector of the past step              
to the current update vector. 
 
Equation of momentum is:  
V(t)=γV(t−1)+η∇J(θ) 

 



 

 

and update the parameter as  
θ=θ−V(t). 
 

3.) Adagrad: 
Adagrad allows the Learning Rate -η to adapt according to the           
parameters. So it makes big updates for infrequent parameters and          
small updates for frequent parameters. Adagrad modifies the general         
learning rate η at each time step t for every parameter θ(i) based on the               
past gradients that have been computed for θ(i).  

Equation for learning rate update is  

 

Adagrad works really well for sparse datasets where a lot of input            
examples are missing.  

Adagrad has a major issue in that the adaptive learning rate tends to get              
really small over time. Some other optimizers below seek to eliminate           
this problem. 

 

4.) Adam: 
Adaptive Moment Estimation (Adam) computes adaptive learning rates        
for each parameter. In addition to storing an exponentially decaying          
average of past squared gradients, Adam also keeps an exponentially          
decaying average of past gradients , similar to momentum 

 

   

 



 

 

          

 

vt and st are values of the first moment (Mean) and the second              
moment (uncentered Variance) of the gradients respectively 

gt is the gradient.  

Adam eliminates most of the problems faced during optimization         
such as vanishing learning rate, slow convergence or high variance          
in the parameter updates, and thus works well in practice and is the             
most widely used optimizer. 

Adam is more computationally expensive than all the other methods          
explained above. 
 
 
 
 
 
 
 

 



 

 

Convolutional Neural Networks 

Convolution Neural Networks use a special architecture which is         
particularly well-adapted to classify images. Using this architecture        
makes convolutional networks fast to train. This, in turn, helps us train            
deep, multi-layer networks which are very good at classifying images.          
Today, deep convolutional networks or some close variants are used in           
most neural networks for image recognition. 

Convolutional neural networks use three basic ideas: local receptive         
fields, shared weights, and pooling  

 
Local receptive fields 
Consider a 28×28-pixel image. Each pixel intensity is an input neuron. 
 

 

 

In a conventional neural network, each input neuron was connected to           
each neuron in the first hidden layer. But it isn’t really necessary to use              
networks with fully-connected layers to classify images because we can          
take advantage of the spatial structure, i.e. the relative position of each            
input neuron. So we won't connect every input pixel to every hidden            
neuron. Instead, each neuron in the first hidden layer will be connected            
to a 5×5 region called the local receptive field, corresponding to 25            
input pixels. 

So, for a particular hidden neuron, the connections will look like this: 
 

 



 

 

 

Each connection to the hidden neuron learns a weight and an overall            
bias. Hence each hidden neuron sort of learns to analyse its particular            
local receptive field. We then slide the local receptive field across the            
entire input image. For each local receptive field, there is a different            
hidden neuron in the first hidden layer. 

 

Then we slide the local receptive field over by one pixel to the right (i.e.,               
by one neuron), to connect to a second hidden neuron: 

 

And so on, building up the first hidden layer. Note that if we have a               
28×28 input image, and 5×5 local receptive fields, then there will be            
24×24 neurons in the hidden layer. This is because we can only move             

 



 

 

the local receptive field 23 neurons across (or 23 neurons down), before            
colliding with the right-hand side (or bottom) of the input image. The            
stride length need not necessarily be 1. We choose the optimal stride            
length using validation data to pick out the stride length which gives the             
best performance (ease of training without significant compromise in         
accuracy of classification). A similar approach is used to choose the           
size of the local receptive field. 

 
Shared weights and biases 

Each hidden neuron has a bias and a 5×5 weight matrix (one weight for              
each input in the local receptive field). This set of weights and biases is              
used to search for a particular feature in that region. Now because it             
may be useful to apply the same feature detector at other points in the              
image, we use the same weights and biases for each of the 24×24             
hidden neurons. This means that all the neurons in the first hidden layer             
search for exactly the same feature, just at different locations within the            
image. We can do this because of the translation invariance of images;            
move a picture of a cat a little way, and it's still an image of a cat.                 
Hence, the map from the input layer to the first hidden layer is called a               
feature map. Each feature map is associated with a feature that it            
searches for in the image, using a single shared weight matrix and a             
single bias. The first hidden layer consists of multiple feature maps and            
is called a convolutional layer. 

 
 

A big advantage of sharing weights and biases is that it greatly reduces             
the number of parameters involved in a convolutional network. For each           
feature map we need 5×5 shared weights, plus a single shared bias. So             
each feature map requires 26 parameters. If we have 20 feature maps            
that's a total of 20×26=520 parameters defining the convolutional layer.          
By comparison, suppose we had a fully connected first layer, with           

 



 

 

28×28 input neurons, and a relatively modest 30 hidden neurons, as we            
used in many of the examples earlier in the book. That's a total of              
784×30 weights, plus an extra 30 biases, for a total of 23,550            
parameters. In other words, the fully-connected layer would have more          
than 40 times as many parameters as the convolutional layer. Reducing           
the number of parameters will result in faster training for the           
convolutional model, and will help us build deeper networks using          
convolutional layers.  

 
Pooling Layers 

In addition to the convolutional layers just described, convolutional neural          
networks also contain pooling layers. Pooling layers are usually used          
immediately after convolutional layers. What the pooling layers do is          
simplify the information in the output from the convolutional layer. A           
pooling layer takes the output from each feature map (i.e. a particular            
layer in the convolutional layer) and prepares a more condensed feature           
map by summarizing a region of 2×2 neurons. 

One common procedure for pooling is known as max-pooling. In          
max-pooling, a pooling unit simply outputs the maximum activation in the           
2×2 input region, as illustrated in the following diagram: 
 

 
 

Note that since we have 24×24 neurons output from each feature map in             
the convolutional layer, after pooling we have 12×12 neurons for each           
map. 

 



 

 

We can think of max-pooling as a way for the network to ask whether a               
given feature is found anywhere in a region of the image, then throw             
away the exact positional information. The idea is that once a feature has             
been found, its exact location isn't as important as its rough location            
relative to other features. This helps reduce the number of parameters           
needed in later layers. 

 

  

 



 

 

Recurrent Neural Networks 

 

One of the problems with the convolutional and artificial neural network is            
that the input and output size is predefined. For tasks like Speech            
Recognition, handling text and music composition, the input and output          
size are variable, thus proposing the need for a new neural network            
architecture which can process sequences.  

Recurrent neural networks help us to process variable length sequences          
as input and produce a suitable output. It is often used in the task of               
Natural Language Processing. 

 

Architecture: 

The architecture of RNN forms a directed graph along a sequence. It            
permits the dynamic temporal behaviour for time and text sequence.          
Let's take the example of the prediction of the next word in a sequence.              
For this, we need to learn the relation between the words prior to it and               
an internal state (memory) to process the sequence. 

To achieve it, a loop is created between the networks which allow the             
information to persist. 

 

 

 

The unrolled version of this architecture is  

 



 

 

 

where xi is the input and yi is the output. 

RNN uses three types of weights: 

● W  , used for ht-1  → ht  
● Why, used for ht  → yt  
● Wxx, used for xt  → ht  

 
 

There can be many variations possible for the structure of RNN: 

● One-to-One: This architecture has fixed input and fixed output         
size; we don’t need an RNN for this. 

● One-to-Many: Input size is fixed but variable output size. Used for           
image captioning, where image is the single input and a caption           
string is the output. Music generation is also one of the           
applications. 

● Many-to-one: This kind of network is used for sentiment analysis,          
for example, if we have to give the probability of a comment being             
positive or negative. 

● Many-to-Many: Size of both input and output is variable. This          
architecture is used for translation as the output depends on the           
previous input and the size of the output is variable. 

 


