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Unsupervised Learning 

Unsupervised learning refers to the use of artificial intelligence (​AI​) algorithms to            
identify patterns in data sets containing data points that are neither classified nor             
labeled. ​Unsupervised machine learning methods cannot be directly applied to a           
regression or classification problem, but can be instead used to discover the            
underlying structure of data. 

In unsupervised learning, unsorted information is grouped according to the          
similarities between the given data points without any prior training. There’s no            
reference data at all.​The unsupervised algorithm works with unlabeled data. Its           
purpose is exploration. If supervised machine learning works under clearly defined           
rules, unsupervised learning is working under the conditions of results being           
unknown and thus needed to be defined in the process. 

Unlike in supervised, the ‘performance’ of unsupervised machine learning algorithms          
is not easy to be estimated. 
 
 
The main applications of unsupervised learning include clustering,        
visualization, dimensionality reduction, finding association rules, and anomaly        
detection. 
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Clustering 

Clustering is a type of unsupervised machine learning algorithm in which similar data             
points in a given dataset are grouped together. This essentially means that the data              
points with similar traits are in the same group. ​Elements in a cluster should be as similar                 
as possible, and points in different groups should be as dissimilar as possible​. ​Clustering              
is used for analyzing and grouping data, which does not include pre-labeled classes or              
class attributes. Clustering can be helpful for businesses to manage their data in a better               
way 

Example:  Detecting customer shopping patterns and grouping them accordingly. 

 

Types of Clustering 

● Centroid-based Clustering - The data is organised into non- hierarchical clusters           
and cluster centers (centroids) are assigned in such a way that the distance of a               
data point is minimum with the center. Eg. K-means clustering. 
 

● Connectivity-based Clustering - Clusters are formed according to closeness of          
data points and the data points which are closer have similar characteristics to             
each other. Eg. Hierarchical clustering. 
 

● Density-based Clustering - Density-based clustering locates regions of high         
density that are separated from one another by regions of low density. 
 

● Subspace Clustering - It seeks to find clusters in different subspaces within the             
dataset. It localizes the search for relevant dimensions allowing them to find            
clusters that exist in multiple overlapping subspaces. 
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K-Means Clustering 

 
K-means is a type of centroid-based clustering. It follows a procedure in which the no.               
of centroids (k) are specified, one for each cluster. 
Different locations of centroids would give different results, so centroids should be            
preferably placed away from each other which would help in more distinction. Next,             
the data points are assigned to a cluster whose centroid is the nearest to them. The                
centroids are then reassigned and this process is repeated to get optimal clusters 
 
Pseudo Code : 

1. k = no. of clusters 
2. place the centroids c​1​ , c​2​, .. c​i​ randomly 
3. for each data point x​i  
                      - find nearest centroid (c​1​ , c​2​, .. c​i ​) 
                      - assign it to that cluster 
4. for each new cluster, new centroid = mean of all points 
5. repeat steps 3 and 4 until optimality 

However, for better results, we first have to find the optimal no. of clusters, i.e. ‘k’.    
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Time Complexity: The k-means algorithm is known to have a time complexity of             
O(n​2​), where n is the input data size. This quadratic complexity debars the algorithm              
from being effectively used in large applications. 

 

Determining the ​optimal number of clusters in a data set is a fundamental issue in               
k-means clustering, which requires the user to specify the number of clusters k to be               
generated. Some of the methods to determine the optimal no. of clusters are :- 

Elbow Method 

The ​Elbow method basically plots the graph of ‘sum of squared distances from             
centroid v/s no. of clusters’ and the point (no. of clusters) at which the distance stops                
getting reduced sharply is the point of optimality. ​If the line graph looks like an arm - a                  
red circle in the below line graph, the "elbow" on the arm is the value of optimal k                  
(number of the cluster). K-means is used to minimize SSE (sum of squared errors).              
SSE tends to decrease toward 0 as we increase k and SSE is 0 when k is equal to                   
the number of data points in the dataset, because then each data point is its own                
cluster, and there is no error between it and the center of its cluster. Therefore, we                
have to choose k in such a way that the error significantly reduces at that particular                
value of k. 

Therefore, the ‘elbow’ is the point where the distortion declines the most. 
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 Here is a demonstration of the use of the elbow method for the ‘IRIS’ dataset. 
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Silhouette 

Silhouette ​can be applied to evaluate the validity of k-means clustering with different             
k values and select the best result. The silhouette plot displays a measure of how               
close each point in one cluster is to points in the neighbouring clusters and thus               
provides a way to assess parameters like number of clusters visually. This measure             
has a range of [-1, 1]. 

Silhouette coefficients near +1 indicate that the sample is far away from the             
neighbouring clusters. A value of 0 indicates that the sample is on or very close to the                 
decision boundary between two neighbouring clusters and negative values indicate          
that those samples might have been assigned to the wrong cluster. 

In the example on the next page, the silhouette analysis is used to choose an optimal                
value for n​clusters​. The silhouette plot shows that the n​clusters values of 3 and 5 are a                 
bad pick for the given data due to the presence of clusters with below average               
silhouette scores and also due to wide fluctuations in the size of the silhouette plots.               
Silhouette analysis is more ambivalent in deciding between 2 and 4. 

Also, from the thickness of the silhouette plot the cluster size can be visualized. The               
silhouette plot for cluster 0 when n​clusters is equal to 2, is bigger in size owing to the                  

grouping of the 3 sub clusters into one big cluster. However, when the n​clusters ​is               
equal to 4, all the plots are more or less of similar thickness and hence are of similar                  
sizes as can also be verified from the labelled scatter plot on the right. 
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Mathematical Analysis 

Let X = {X​1​, X​2​, ..., X​n​} be a set of n data points. X​i​(1 ≤ i ≤ n) is one of the data points,                         
which can be represented as [x​i,1​, x​i,2​, ..., x​i,m​], where m is the number of features.                
Given the set of data points X, an integer k(2 ≤ k ≤ n) and k initial centroids in the                    
domain of X, the k-means algorithm aims to nd a clustering of X into k clusters such                 
that it minimises the k-means Cost Function, which is dened as as follows: 

 

 

 

where dE(·,·) is the squared Euclidean distance, C={C​1​, C​2​, ..., C​k​}, which is a set of                
cluster centroids after clustering, and w​i,l is the indicator function, which equals to 1              
when X​i is in C​l and 0 when X​i is not in C​l​. For a single data point X​i​, its Silhouette                     
value sil(i) is calculated as: 

 

 
 
 
 
where a(i) is the distance of X​i​ to its own cluster, which is dened as: 
 

 

 

 

where n​h is the number of data points in the cluster h. b(i) is the distance of X​i to its                    
closest neighbouring cluster, which is dened as: 
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The sil(i) ranges from −1 to 1. When a(i) is much smaller than b(i), the sil(i) is close to                   
1 to show this data point is well clustered. In the opposite way, the sil(i) is close to −1                   
to show it is badly clustered. 

The Silhouette value of a whole cluster or a full clustering is dened as the average                
value of sil(i) across all the data involved: 

 

 

 

 
Therefore, the Silhouette value for a full clustering Sil also ranges from −1, which              
shows a very bad clustering, to 1, which shows a perfect clustering. 
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Hierarchical Clustering 

Hierarchical clustering constructs a (usually binary) tree over the data. The leaves            
are individual data items, while the root is a single cluster that contains all of the data.                 
Between the root and the leaves are intermediate clusters that contain subsets of the              
data. The main idea of hierarchical clustering is to make “clusters of clusters” going              
upwards to construct a tree.  

There are two main conceptual approaches to forming such a tree. Hierarchical            
agglomerative clustering (HAC) starts at the bottom, with every datum in its own             
singleton cluster, and merges groups together. Divisive clustering starts with all of the             
data in one big group and then chops it up until every datum is in its own singleton                  
group. 

 

 

Agglomerative Clustering 

 

Basic Agglomerative Clustering Algorithm 

1. Compute the proximity matrix, if necessary 

2. repeat​ { 

a. Merge the closest two clusters 

b. Update the proximity matrix to reflect the proximity between the new           

cluster and the original clusters } 

3. until​ Only one cluster remains 
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Defining Proximity between Clusters 

Single Link or Min 

Here, the proximity of two clusters is defined as the minimum of the distance between               
any two points in the two different clusters. The single link technique is good at               
handling non-elliptical shapes, but is sensitive to noise and outliers. 

 

 

 

 

Complete Link or MAX or CLIQUE 

For the complete link or MAX version of hierarchical clustering, the proximity of two              
clusters is defined as the maximum of the distance between any two points in the two                
different clusters. Complete link is less susceptible to noise and outliers, but it can              
break large clusters and it favours globular shapes. 

 

 

 

 

Group Average 

For the group average version of hierarchical clustering, the proximity of two points is              
defined as the average pairwise proximity among all pairs of points in the different              
clusters. Thus, for group average, the cluster proximity proximity(C​i , C​j​) of clusters C​i              

and C​j​, which are of size m​i and m​j​, respectively, is expressed by the following               
equation: 
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Ward’s Method and Centroid Methods 

For Ward’s method, the proximity between two clusters is defined as the increase in              
the squared error that results when two clusters are merged. Thus, this method uses              
the same objective function as K-means clustering.  

Centroid methods calculate the proximity between two clusters by calculating the           
distance between the centroids of clusters.  

 

 

The Lance-Williams Formula for Cluster Proximity 

Any of the cluster proximities that we have discussed can be viewed as a choice of                
different parameters, in the Lance-Williams formula, for the proximity between          
clusters Q and R, where R is formed by merging clusters A and B. In this equation,                 
p(., .) is a proximity function, while m​A​, m​B​, and m​Q are the number of points in                 
clusters A, B, and Q, respectively. In other words, after we merge clusters A and B to                 
form cluster R, the proximity of the new cluster, R, to an existing cluster, Q, is a linear                  
function of the proximities of Q with respect to the original clusters A and B. 

Any hierarchical clustering technique that can be expressed using the Lance-Williams           
formula does not need to keep the original data points. Instead, the proximity matrix              
is updated as clustering occurs.  
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Divisive Clustering 

Start with one, all-inclusive cluster and, at each step, split a cluster until only              
singleton clusters of individual points remain. In this case, we need to decide which              
cluster to split at each step and how to do the splitting. 

 

 

 

 

 

 

 

 

 

 

 

 

Basic Divisive Clustering Algorithm 

Given a dataset, at the top we have all the data in one single cluster. The cluster is                  
split using some flat clustering method such as K-Means. 

1. repeat​ { 
a. Choose the best cluster among all the clusters to split 

b. Split that cluster by the flat clustering algorithm } 

2. until​ Each data is in its own singleton cluster 
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Fuzzy C-Means 

Clustering can be either hard or fuzzy type. In the first category, the patterns are               
distinguished in a well-defined cluster boundary region. But due to the overlapping            
nature of the cluster boundaries, some classes of patterns may be specified in a              
single cluster group or dissimilar group. To reduce such limitations fuzzy type            
clustering came into the picture. Fuzzy clustering problems can be grouped into three             
branches:  

(a) Based on fuzzy relation; 

(b) Based on fuzzy rule learning; and  

(c) Based on optimization of an objective function.  

The fuzzy clustering based on the objective function is quite popularly known to be              
Fuzzy c-means clustering (FCM). In FCM method, the pattern may belong to all the              
cluster classes with a certain fuzzy membership degree. 

 

Structure 

The FCM approach uses a fuzzy membership. There are three basic operators in the              
FCM method: the fuzzy membership function, partition matrix and the objective           
function.  

Let us consider a set of n vectors (X = (x​1​,x​2​,…x​n​) 2<=c<=n) for clustering into c                
groups. Each vector x​i є R​s is described by s real valued measurements which              
represent the features of the object x​i​. A membership matrix known as Fuzzy partition              
matrix is used to describe the fuzzy membership. The set of fuzzy partition matrices              
(cxn) is denoted by M​fc​ and is defined as: 
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The objective function of the fuzzy c-means algorithm is computed by using            
membership value and Euclidean distance. 

 

 

 

 

 

where m є (1,∞) is the parameter which defines the fuzziness of the resulting clusters               
and d​ik​ is the Euclidian distance from object x​k​ to the cluster center p​i​. 

The minimization of the objective function J​m through FCM algorithm happens by            
iterative updation of the partition matrix using the following two equations: 

 

 

 

 

 

The FCM membership function is calculated as: 

 

 

 

 

μ​i,j is the membership value of j​th sample and i​th cluster. The number of clusters is                
represented by c. x​j is the j​th sample and v​i cluster center of the i​th cluster. || ||​A                  
represents the norm function. 
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Algorithm 

1. Initialize​ the number of clusters c. 

2. Select an inner product metric Euclidean norm and the weighting          

metric (fuzziness). 

3. Initialize​ the cluster prototype P​(0)​, iterative counter b = 0. 

4. Then calculate the partition matrix W​(0)​. 

5. Update the fuzzy cluster centers P​(b+1)​. 

6. If ||P​(b)​-P​(b+1)​|| < Ɛ then stop, otherwise ​repeat​ step ​2​ through ​4​. 
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DBSCAN 

 

DBSCAN ​stands for ​Density Based Spatial Clustering of Applications with          
Noise​. Density-based clustering locates regions of high density that are separated           
from one another by regions of low density. In the center-based approach of defining              
density, density is estimated for a particular point in the data set by counting the               
number of points within a specified radius, є, of that point. This includes the point               
itself. This is called the epsilon neighbourhood of the point which is defined as              
follows: 

 

 

This method is simple to implement, but the density of any point will depend on the                
specified radius. For instance, if the radius is large enough, then all points will have a                
density of m, the number of points in the data set. Likewise, if the radius is too small,                  
then all points will have a density of 1. 

 

Classification of Points 

Core Points 

These points are in the interior of a density-based cluster. A point is a core point if the                  
number of points within a given neighbourhood around the point as determined by             
the distance function and a user-specified distance parameter, є, exceeds a certain            
threshold, MinPts, which is also a user-specified parameter. 

 

 

Border Points 

A border point is not a core point, but falls within the neighbourhood of a core point. 
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Noise Points 
A noise point is any point that is neither a core point nor a border point. 

 

 

 

 

 

 

 

 

 

 

The DBSCAN Algorithm 

Given the previous definitions of core points, border points, and noise points, the             
DBSCAN algorithm can be informally described as follows.  

1. Label all points as core, border or noise points. 

2. Eliminate noise points. 

3. Put an edge between all core points that are within є distance of each               
other. 

4. Make each group of connected core points into a separate cluster. 

5. Assign each border point to one of the clusters of its associated core              
points. 
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Selection of DBSCAN Parameters 

There is the issue of how to determine the parameters є and MinPts. The basic               
approach is to look at the behaviour of the distance from a point to its kth nearest                 
neighbour, which we will call the k-dist. For points that belong to some cluster, the               
value of k-dist will be small if k is not larger than the cluster size.  

Therefore, if we compute the k-dist for all the data points for some k, sort them in                 
increasing order, and then plot the sorted values, we expect to see a sharp change at                
the value of k-dist that corresponds to a suitable value of є. If we select this distance                 
as the є parameter and take the value of k as the MinPts parameter, then points for                 
which k-dist is less than є will be labelled as core points, while other points will be                 
labelled as noise or border points. 

 

Strengths and Weaknesses 

 

 

 

 

 

 

 

Sample Data          K-Dist plot 

 

Because DBSCAN uses a density-based definition of a cluster, it is relatively            
resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus,             
DBSCAN can find many clusters that could not be found using K-means.  
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However, DBSCAN has trouble when the clusters have widely varying densities.           
Also, DBSCAN can be expensive when the computation of nearest neighbours           
requires computing all pairwise proximities, as is usually the case for           
high-dimensional data. 
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